نوع مقاله : پژوهشی

نویسندگان

1 استادیار جمعیت‌شناسی، گروه جمعیت و سلامت، مؤسسه تحقیقات جمعیت کشور، تهران، ایران.

2 دانشجوی دورة دکتری جمعیت‌شناسی، گروه جمعیت‌شناسی، دانشکدة علوم اجتماعی، دانشگاه تهران، تهران، ایران .

چکیده

به‌منظور آگاهی از تأثیر کووید-19 بر الگوی مرگ‌ومیر در ایران، در این مطالعه سعی شده است بر اساس داده‌های مرگ‌ومیر منتشرشده توسط سازمان ثبت احوال کشور، سطح و الگوی سنی و جنسی مرگ‌ومیر اضافی در ایران برآورد شود. داده‌های مربوط به مرگ‌ومیر هفتگی بر حسب سن و جنس از سال 1394 تا سال 1400 از سازمان ثبت احوال کشور و داده‌های مربوط به مرگ‌ومیر هفتگی ناشی از کووید-19 از گزارش‌های هفتگی وزارت بهداشت، درمان و آموزش پزشکی اخذ شد و با استفاده از تابع پیش‌بینی رگرسیون هموارسازی نمایی، مرگ‌ومیر اضافی برآورد گردید. یافته‌ها نشان داد که آمارهای رسمی مرگ‌ومیر گزارش‌شده در کشور، تمام فوت‌های ناشی از کووید-19 را شامل نمی‌شود. همچنین، این بیماری، از ابتدای شیوع تا زمان انجام این مطالعه، باعث افزایش حدود 30 درصدی فوت‌ها در کشور شده است. نسبت جنسی فوت ناشی از کووید-19 در ایران 1/1 برآورد شد. بیش از 80 درصد از مرگ‌و‌میرهای ناشی از کووید-19 نیز در گروه‌های سنی 55 ساله و بالاتر رخ داده است. همانند برخی از کشورهای درحالِ‌توسعه، در ایران نیز به‌طور قابل‌توجهی مرگ‌های ناشی از کووید-19 کمتر گزارش شده است. نتایج این مطالعه، اهمیت گزارش سریع مرگ‌ومیر بر حسب همة علل را برای پایش همه‌گیری نشان می‌دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Estimation of the Level, Trend and Age-Sex Patterns of Excess Mortality during the Covid-19 Pandemic in Iran

نویسندگان [English]

  • Mohammad Sasanipour 1
  • Mahyar Mohebi-Meymandi 2

1 Assistant Professor in Demography, Department of Population and Health, National Institute for Population Research, Tehran, Iran.

2 Ph D. Candidate in Demography, Department of Demography, Faculty of Social Sciences, University of Tehran, Tehran, Iran.

چکیده [English]

In order to be aware of the Covid-19 effect on mortality pattern in Iran, in this study, based on the published mortality data of the National Organization for Civil Registration, has been tried to estimate the level and pattern of age and sex of excess mortalityin Iran . Data onweekly mortality by age and sex from 2015 to 2021 from the National Organization for Civil Registration and data on weekly mortality due to Covid-19 from the weekly reports of the Ministry of Health and Medical Education were obtained and the excess mortality was estimated using the exponential smoothing regression prediction function. Results showed that the official statistics of deaths reported in the country do not include all deaths caused by Covid-19; this disease has also caused an increase of about 30 % in deaths since its outbreak The sex ratio of Covid-19 deaths in Iran is estimated at 1.1 and more than 80% of Covid-19 deaths have occured in the age group of 55 years and older. Like some developing countries in Iran, deaths due to Covid-19 are significantly reported less .The results of this study demonstrate the importance of rapid reporting all-cause mortality for epidemic monitoring.

کلیدواژه‌ها [English]

  • Covid-19
  • Mortality
  • Infectious Diseases
  • age
  • Iran
رازقی نصرآباد، حجیه‌بی‌بی و محمد ساسانی‌پور (1400). ابعاد و پیامدهای جمعیتی کرونا- کووید-19، طرح پژوهشی، تهران: مؤسسه تحقیقات جمعیت کشور.
محبی میمندی، مهیار و محمد ساسانی‌پور (1399). کووید-19 و بازبینی گذارهای جمعیت‌شناختی: عصر اپیدمی‌های عفونی-انگلی نوپدید؟ نامة انجمن جمعیت‌شناسی ایران، دورة 15، شمارة 30، صص 74-47.
محبی میمندی، مهیار و محمد ساسانی‌پور (1399). مدرنیزاسیون و شیوع بیماری‌های عفونی نوپدید: بررسی عوامل زیربنایی ظهور و همه‌گیری کووید-19 و تداوم آن، فصلنامة علوم اجتماعی، دورة 27، شمارة 91، صص 78-39.
Agrawal, A., A. Gindodiya, K. Deo, S. Kashikar, P. Fulzele, & N. Khatib (2021). A Comparative Analysis of the Spanish Flu 1918 and COVID-19 Pandemics, The Open Public Health Journal, 14(1): 128-134.
Andrasfay, T., & N. Goldman (2021). Reductions in 2020 US life expectancy due to COVID-19 and the disproportionate impact on the Black and Latino populations, Proceedings of the National Academy of Sciences, 118(5): 1-15.
Bilinski, A., & E. J. Emanuel (2020). COVID-19 and excess all-cause mortality in the US and 18 comparison countries, Jama, 324(20): 2100-2102.
Borghesi, A., A. Zigliani, R. Masciullo, S. Golemi, P. Maculotti, D. Farina, & R. Maroldi (2020). Radiographic severity index in COVID-19 pneumonia: relationship to age and sex in 783 Italian patients, La radiologia medica, 125(5): 461-464.
Chen, J. (2020). Pathogenicity and transmissibility of 2019-nCoV—a quick overview and comparison with other emerging viruses, Microbes and infection, 22(2), 69-71.
Chen, T., J. Rui, Q. Wang, Z. Zhao, J. Cui, & L. Yin (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infect Dis Poverty, 9:24-35.
Cohan, C. L., & S. W. Cole (2020). Life course transitions and natural disaster: Marriage, birth, and divorce following Hurricane Hugo, Journal of Family Psychology, 16(1): 14-29.
Dehingia N, & Raj A. (2021). Sex differences in COVID-19 case fatality: do we know enough?, The Lancet Global Health, 9(1):14-15.
Ghafari, M., A. Kadivar, & A. Katzourakis (2021). Excess deaths associated with the Iranian COVID-19 epidemic: A province-level analysis, International Journal of Infectious Diseases, 107: 101-115.
Hisaka, A., H. Yoshioka, H. Hatakeyama, H. Sato, Y. Onouchi, & N. Anzai (2020). Global comparison of changes in the number of test-positive cases and deaths by coronavirus infection (COVID-19) in the world, Journal of clinical medicine, 9(6): 1904-1912.
Ibrahim, A. M., M. M. Eid, N. N. Mostafa, N. E. H. M. Bishady, & S. H. Elghalban (2020). Modeling the effect of population density on controlling Covid-19 initial Spread with the use of MATLAB numerical methods and stringency index model, In 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES) (pp. 612-617). IEEE.
Istituto Superiore di Sanità. Characteristics of COVID-19 patients dying in Italy: Report based on available data on March 26th, 2020 [Internet]. Rome: Istituto Superiore di Sanità; 2020 Mar. Available from: https://www.epicentro.iss.it/coronavirus/bollettino/Report-COVID-2019_26_marzo_eng.pdf
Jakhmola, S., B. Baral, & H. C. Jha (2021). A comparative analysis of COVID-19 outbreak on age groups and both the sexes of population from India and other countries, The Journal of Infection in Developing Countries, 15(03), 333-341.
Karlinsky, A., & D Kobak (2021). Tracking excess mortality across countries during the COVID-19 pandemic with the World Mortality Dataset, eLife, 30(10): 1-20.
Kelly, G. E., S. Petti, & N. Noah (2021). Covid-19 and excess mortality rates not comparable across countries, Epidemiology and Infection, 149(176): 1-6.
Kobak, D. (2022). Underdispersion: A statistical anomaly in reported covid data, Significance, 19(2): 10–13.
Kontis, V., J. E. Bennett, T. Rashid, R. M. Parks, J. Pearson-Stuttard, M. Guillot, ... & M. McKee (2020). Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries. Nature medicine, 1-10.
Mackenbach J. P. (1994). The epidemiologic transition theory, Journal of epidemiology and community health, 48(4): 329–331.
Madhav, N., B. Oppenheim, M. Gallivan, P. Mulembakani, E. Rubin, & N. Wolfe (2017). Pandemics: risks, impacts, and mitigation. 3rd ed.Washington [DC]: The International Bank for Reconstruction andDevelopment / The World Bank 2017.
Mc Keown. R. E. (2009). The Epidemiologic Transition: Changing Patterns of Mortality and Population Dynamics, Am J Lifestyle Med, 3(1): 19-26.
Mesle, F., & J. Vallin (2006). The health transition: trends and prospects. In: Caselli G, Vallin J, Wunsch G, eds, Demography, analysis and synthesis. A treatise in demography. New York: Elsevier, pp. 247-602.
 Michelozzi, P., F. de’Donato, M. Scortichini, P. Pezzotti, M. Stafoggia, M. De Sario, ... & M. Demaria (2020). Temporal dynamics in total excess mortality and COVID-19 deaths in Italian cities, BMC public health, 20(1): 1-8.
Molaei, A., & M. Gholami (2021). The Geographic Distribution of Excess Mortality Rate due to COVID-19 in Iranian Population: An Ecological Study, Iranian Red Crescent Medical Journal, 23(11): 1-5.
Musellim, B., S. Kul, P. Ay, FÇ. Küçük, E. Dağlı, O. Itil, & H. Bayram (2021). Excess Mortality During COVID-19 Pandemic in İstanbul. Turkish Thoracic Journal, 22(2):137-146.
Nikpouraghdam, M., A. J. Farahani, G. Alishiri, S. Heydari, M. Ebrahimnia, H. Samadinia, ... & M. Bagheri (2020). Epidemiological characteristics of coronavirus disease 2019 (COVID-19) patients in IRAN: A single center study, Journal of Clinical Virology, 127: 1043-78.
 Nørgaard, S. K., L. S. Vestergaard, J. Nielsen, L. Richter, D. Schmid, N. Bustos, ... & K. Mølbak (2021). Real-time monitoring shows substantial excess all-cause mortality during second wave of COVID-19 in Europe, Eurosurveillance, 26(2): 1-12.
Olshansky, S. J. & A. B. Ault (1986). The fourth stage of the epidemiologic transition: the age of delayed degenerative diseases, Milbank, 64: 355-91.
Olshansky, S. J., B. Carnes, R. G. Rogers & L. Smith (1997). Infectious diseases: New and ancient threats to world health. Population Bulletin-Washington, 52.
Omran, A. R (1971). The epidemiologic transition: A theory of the epidemiology of population change, Milbank Memorial Fund Quarterly, 49(4): 509-538.
Onder, G., G. Rezza, & S. Brusaferro (2020). Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy, Jama, 323(18): 1775-1776.
Park, M. D. (2020). Sex differences in immune responses in COVID-19, Nature Reviews Immunology, 20(8): 461-461.
Razeghi Nasrabad, H., M. Sasanipour (2021). Effect of COVID-19 Epidemic on Life Expectancy and Years of Life Lost in Iran: A Secondary Data Analysis, Iranian Journal of Medical Sciences, (in press).
Rossen, L. M., A. M. Branum, F. B. Ahmad, P. Sutton, & R. N. Anderson (2020). Excess deaths associated with COVID-19, by age and race and ethnicity—United States, January 26–October 3, 2020, Morbidity and Mortality Weekly Report, 69(42): 152-40.
Sharma, G., A. S. Volgman, & E. D. Michos (2020). Sex differences in mortality from COVID-19 pandemic: are men vulnerable and women protected?, Case Reports, 2(9): 1407-1410.
Tadbiri, H., M. Moradi-Lakeh, M. Naghavi (2020). All-cause excess mortality and COVID-19-related deaths in Iran, Med J Islam Repub Iran, 34(80): 1-6.
Tahamtan, A., & A. Ardebili (2020). Real-time RT-PCR in COVID-19 detection: issues affecting the results, Expert review of molecular diagnostics, 20 (5): 453-454.
Takahashi, T., M. K. Ellingson, P. Wong, B. Israelow, C. Lucas, J. Klein, ... & A. Iwasaki (2020). Sex differences in immune responses that underlie COVID-19 disease outcomes, Nature, 588(7837): 315-320.
Weinberger, D. M., T. Cohen, F. W. Crawford, F. Mostashari, D. Olson, V. E. Pitzer, N. G. Reich, M. Russi, L. Simonsen, A. Watkins, & C. Viboud (2020). Estimating the early death toll of COVID-19 in the United States. medRxiv: the preprint server for health sciences, 2020.04.15.20066431.
Worlometer. Coronavirus cases and deaths. Last updated: November 21, 2021, 07. https://www.worldometers.info/coronavirus/country/iran/